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Abstract: In this paper, we proposed the Bayesian estimation for the 

parameter and reliability function of exponentiated gamma distribution 

under progressive type-II censored samples. The Bayes estimate of the 

parameter and reliability function are derived under the assumption of 

independent gamma prior by three different approximation methods namely 

Lindley’s approximation, Tierney-Kadane and Markov Chain Monte Carlo 

methods. Further, the comparison of Bayes estimators with corresponding 

maximum likelihood estimators have been carried out through simulation 

study. Finally, a real data set has been used to illustrate the above study in 

realistic phenomenon. 
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1. Introduction 

In survival and clinical trial studies exponential distribution is the most widely 

used for data analysis and is preferred for the situations where failure rate is constant 

in nature. In case of monotonic failure rate, a number of distributions have been 

suggested but Weibull and gamma distributions are most frequently used. The gamma 

distribution has a major constraint that its survival function cannot be expressed in 

nice closed forms, thus, it create difficulties for further mathematical modifications. 

The survival and hazard function for the such distribution are often evaluated 

numerically. This is one of the important reasons that made the gamma distribution 

unpopular in comparison to the Weibull distribution. Although Weibull distribution 

has a nice closed form for hazard and survival function, but it has its own 

disadvantages. Gupta et al. (1998) have proposed the use of exponentiated gamma 

distribution as an alternative to gamma and Weibull distributions. Shawky and 

Bakoban (2008) have discussed the applicability of exponentiated gamma distribution 

and derived Bayesian and non-Bayesian estimators of the shape parameter, reliability 
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and failure rate functions in the case of complete and type-II censored samples. 

Further, Shawky and Bakoban (2009) considered the order statistics from an 

exponentiated gamma (EG) distribution and discussed the several mathematical 

properties based on order statistics. Singh et al. (2011), Ghanizadeh et al. (2011) and 

Khan and Kumar (2011) have also proposed the estimation procedure for the EGD 

under complete and censored data. 

The probability density function and reliability function of exponentiated gamma 

distribution (EGD) are given by following equations; 

  ;x ≥ 0,α > 0 (1) 

and 

  ;t,α > 0 (2) 

It may be noted here that, the EGD is a simple generalization of the Gamma 

distribution with known shape and scale parameters, namely G(2,1). This distribution 

is parsimonious in parameters and hence, simple to use. The other advantage is that, 

it has various shapes of hazard function for different values of the shape parameter α. 

It has increasing hazard function when α > 1/2 and takes Bath-tub shape for α < 1/2. 

For other details about this distribution, we refer Shawky and Bakoban (2008), Singh 

et al. (2011). 

1.1 Progressive Censoring and Likelihood Function 

In a typical life testing experiments, Type-I and Type-II censoring schemes are 

the two most popular schemes. Both schemes have its own advantages and 

disadvantages. Usually, life testing experiments are costly and time consuming. 

Therefore, the experimenter terminate the experiment at a prefixed time T or pre-

chosen number of failure R. Therefore, in Type-I censoring scheme, censoring time T 

is prefixed and number of failure R is random, while in Type-II censoring scheme 

number of failure R is prefixed and termination time T of the experiments is random. 

The above discussed censoring schemes does not provide the flexibility of removing 

the experimental units during the experiment time. Therefore, more generalized 

version of the Type-II censoring schemes is proposed by Cohen (1965) named as 

progressive Type-II censoring (PT-II) scheme. PT-II censoring provides the facility 

of removals of the units during the experiments and reduces the cost and experiment 

time. This may be the reason behind its popularity. For more detail about the PT-II 

censoring readers may refer to Balakrishana and Aggarwala (2000), Balakrishana and 

Hossain (2007), Balakrishnan and Shandhu (1965), Krishna and Kumar (2011). 

In case of PT-II censoring scheme, the likelihood function is given by the 

following equations. 
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                       (3) 

 where, ψ = n(n − R1 − 1),··· ,(n − R1 − R2 − ··· − Rm−1 − m + 1). Therefore, the 

likelihood function using (1) can be written as; 

 

Now, the log-likelihood function is given by 

  (5) 

The layout of this paper is as follows; In Section 1, we provides the basic 

introduction and literatures related to the considered model. The MLEs are obtained 

in Section 2. The Bayes procedure for EGD under different approximation techniques 

are discussed in Section and Subsections of 3. The real data analysis and numerical 

comparison are presented in Sections 4 and 5 respectively. Finally, in Section 6, we 

conclude the paper. 

2. Maximum Likelihood Estimation 

The maximum likelihood estimate (MLE) of the parameter is obtained by using the 

above equation (5). To obtain MLE, firstly we differentiate the log-likelihood equation 

w.r.t. the parameter and equate it to zero. Thus, we have; 

 = 0 (6) 

where, φxj = [1 − (1 + xje−xj)]. Therefore, MLE of α is the solution of the above equation 

(6). But we observed that, the analytical solution of the above equation is not possible. 

Thus, we proposed the use of Newton-Raphson (N-R) algorithm 
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2.1 Asymptotic confidence interval 

to calculate MLE. Further, if we suppose that ˆαM is the MLE of α. Then, the MLE of the reliability 

function is obtained by using the invariance property of MLE which is given in following equation. 

 

                            (7) 

2.1 Asymptotic confidence interval 

To construct asymptotic confidence interval, we need to obtain the observed Fisher information. 

Therefore, the Fisher information matrix is given by 

 

also the asymptotic variance of α is given by 

 

But, the exact mathematical expressions for the above expectation is not exist. Therefore, by using the 

concept of large sample theory the 100(1−φ)% confidence interval of α is given by; 

[αˆL,αˆU] = αˆM ∓ zφ/2
pV ar(αˆM) 

3. Bayesian Estimation 

In this section, we have obtained the Bayes estimates for the unknown parameters α and reliability 

function R(t) based on PT-II censored data. In Bayesian analysis, the parameter of interest is to be 

considered as a random variable and follows some prior distribution. Here, we assume that, parameter 

α ∼ gamma(a,b) density i.e.  

π(α) ∝ αa−1e−bα;α > 0 

where a, b are the hyper parameters which are assumed known. The above considered prior is more 

applicable in the sense that, it is more flexible and assumes different variety of prior which may be 

the reason behind its popularity. To obtain the Bayes estimates these quantities, squared error loss 

function is taken and defined as;Squared error loss function (SELF): LS(α,αˆ) = (αˆ − α)2, 
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In each case ˆα represents the estimates of unknown parameter α. The Bayes estimate of α with respect 

to the LS loss function is obtained from its posterior distribution as; 

αˆS = {Eα(α|x)} 
 

3.1 Lindley’s Approximation Method provided 

the above expectation exist. 

Therefore, based on the above prior, the posterior distribution of α is given 

as; 

  (8) 

Now, the Bayes estimators of the parameter and reliability function under SELF is given 

as; 

  (9) 

and 

  (10) 

where, µ(α,xj) = ∏ [𝑥𝑗{1 − 𝑒−𝑥𝑗(1 +  𝑥𝑗)}𝛼−1{1 − {1 −  𝑒−𝑥𝑗(1 +  𝑥𝑗)}
𝛼

}
𝑅𝑗

]𝑚
𝑗=1    

 

From the above equations we observed that, the analytical solution of the integrals (9, 10) is not 

possible due to the implicit mathematical form and thus, we require some approximation techniques. 

Therefore, here the authors are proposing the use of three different approximation method namely 
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Lindley’s approximation method, T-K approximation and Markov Chain Monte Carlo method for 

evaluation the Bayes estimates of the parameter and reliability function. 

 

3.1. Lindley’s Approximation Method 

In the previous section, we obtained Bayes estimates based on PT-II censored data observed from 

EGD. These estimators are derived against squared error loss 

 

3.2 T-K Approximation Method 

functions. It is easy to observed that all these estimates are in the form of ratio of two integrals 

for which simplified closed forms are not available. Thus, one can apply Lindley’s (1980) 

approximation methods to evaluate these estimates. Using this method the Bayes estimates are 

obtained by following equations; 

                             (11) 

and 

                    (12) 

where, 

 

and 

 

all the above derivatives are evaluated at the point ˆαM. If n is sufficiently large then ˆαBL → 

αˆM. 

 

 

3.2 T-K Approximation Method 



Umesh Singh, Sanjay Kumar Singh and Abhimanyu Singh Yadav                             557 

In this subsection, we use an alternative method of Lindley’s approximation to evaluate the 

explicit expression for the posterior expectation. This method is very useful as compared to the 

Lindley’s and some other computational methods. This method was initially introduced by Tierney-

Kadane (1986). A very useful compression between Lindley’s and T-K method can be seen in 

Hawaldar and Hoosaini (2002) and Rastogi & Tripathi (2012, 2014). To implement this method, let 

us consider a parametric function H(α) and define, 

    (13) 

    (14) 
3.2 T-K Approximation Method 

Here, L(α|x) is the log-likelihood function and π(α) is the prior distribution. Suppose that ˆαη and 

ˆαη∗ are the values of α which maximizes the above equations. Then using the method of Tierney and 

Kadane the posterior expectation is approximated as; 

    (15) 

where, |Σ| and |Σ∗| are the negative of inverse Hessian of η(α) and η∗(α) respectively computed at ˆαη, 

ˆαη∗. 

Now, we derive the Bayes estimators of shape parameter α and reliability function R(t) using this 

method. Therefore, in our considered case, 

 

 

To compute the approximate Bayes estimates of α, we take H(α) = α, then the function η ∗ (α) will be; 

  

 

 

                                                                (17) 
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Thus, the desired Bayes estimate of α is finally obtained as; 

          (18) 

Now, for the Bayes estimates of the reliability function R(t), H(α) = 1−{1 − e−t(1 + t)}α, then we have 

 

              (19) 

and 

, 

3.3 Markov Chain Monte Carlo Method 

Thus, the desired Bayes estimate of RT is obtained as; 

                                             (20) 

In the next subsection, we use the Markov Chain Monte Carlo method to compute the Bayes estimates 

for the parameter and reliability function. 

 

3.3 Markov Chain Monte Carlo Method 

The Markov Chain Monte Carlo method (MCMC) is one of the best technique for obtaining the 

Bayes estimates. This method provides the flexibility of extracting the posterior samples from its 

respective posterior distribution. Here, we consider the Metropolis-Hastings algorithm, to generate 

samples from the full conditional posterior distributions and then compute the Bayes estimates. For 

more details about the MCMC methods see, for example, Smith and Gelfand (1990), Hastings (1970), 

Upadhyaya and Gupta (2010). Therefore the marginal posterior distribution is; 
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The following steps are taken into account to generate the sample from above posterior distribution. 

• set the initial values of α say α0 

• Set k=1 

• Generate posterior sample for α from (10). 

• Repeat step 2, for all k = 1,2,3,···M and obtain α1,α2,··· ,αM 

• After obtaining the MCMC samples, the Bayes estimates of the parameter and reliability function 

under SELF are the mean of the posterior samples. 

• Therefore, we have, 

 

 
 

• The Bayesian credible interval for the parameter is obtained by using the generated MCMC 

samples. Thus, to construct 95% credible interval order α1,α2,...,αM as α1 < α2 < ··· < αM. Then 

100(1 − φ)% credible intervals of α is 

(α1,α[M(1−φ)+1]),··· ,(α[Mφ],αM) 

. 

Here [x] denotes the greatest integer less than or equal to x. Then the HPD credible interval is that 

interval which has the shortest length. 

 

4. Real Data Application 
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In this section, we consider a real data set to show the applicability of the considered model. The 

considered real data set represent the average monthly rainfall obtained from the Information System 

for Management of Water Resources from the State of So Paulo, including a period of 56 years from 

1947 to 2003, for the month of November., which is represented as; 

0.2,3.5,2.8,3.7,8.7,6.9,7.4,0.8,4.8,2.5,2.9,3.1,4.0,5.0,3.8,3.5,5.4,3.3,2.9,1.7,7.3,2.9,4.6,1.1,1.4,3.9 , 

6.2,4.1,10.8,3.8,7.3,1.8,6.7,3.5,3.2,5.2,2.8,5.2,5.4,2.2,9.9,2.1,4.7,5.5,2.6,4.1,5.4,5.5,2.1,1.9,8.8 , 

1.3,24.1,5.4,6.2,2.9 

Fitting of the given data set has been checked through different method of estimation using empirical 

cdf and qq plots. Also Likelihood ratio test has been performed to test the hypothesis H0 : α = 

1[Gamma(2,1)] against H1 : α 6= 1[EGD]. Let us consider the ratio T as; 

 

                       (22) 

The above expression shows that the ratio T is less than unity i.e. LˆH0 < LˆH1. It means that 

the likelihood under alternative hypothesis contains more information than the null hypothesis. 

Therefore, one can recommend to select exponentiated gamma distribution (EGD) instead of the other 

family of distribution. Further, the point estimation of the parameter and reliability function have been 

done by considering different variation of censoring schemes using various approximation techniques 

see Tables 1. Also, the interval estimates of the parameter are presented in Table 2. In order to 

implement MCMC algorithm in he considered real data set the convergence of chain has been 

acheived by tuning process. In this context the trace and density plot based on 10000 MCMC samples 

are given in figure 2, which shows that the generated sample for the considered proposal distribution 

are well mixed and cover true value of the parameter. 

 

 

 

ECDF plot for the real Data set 
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x 

Figure 1: Empirical CDF plot for the real data. 

 Density plot of α Trace plot of α 

 

 3.0 3.2 3.4 3.6 3.8 0 2000 4000 6000 8000 10000 

 N = 11001   Bandwidth = 0.01577 Time 

Figure 2: Convergence chain plot for the real data set. 

5. Numerical Study 

In previous sections, we have obtained the mathematical expression for maximum likelihood and 

Bayes estimators for unknown parameter and reliability function under progressive type-II censoring. 

0 5 10 15 20 25 

Empirical CDF 
EGD_MLE 
EGD_Lindley 
EGD_T−K 
EGD_MCMC 
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In this section, we compare the performances of these estimators numerically using Monte Carlo 

simulations. For comparison purpose, we have generated a random number from exponentiated 

gamma distribution for α = 2. The progressive type-II censored samples are generated using 

Balakrishanan and Shandhu algorithm. Two value of sample size n = 20,30 are taken and 

corresponding effective sample sizes are chosen in such a way that the observed samples are 50%, 

60% and 80% are censored. For each effective sample sizes four different censoring schemes are 

chosen as the removals occurs at (i); each stages (ii): at initial stages, (iii): last stages and (iv): mid 

points. The mean square error criterion is considered for compression of the estimators. MLE of the 

parameter is obtained by using non-linear maximization technique and corresponding reliability 

function is obtained by using invariance property. The Bayes estimates of the parameter and reliability 

function are obtained under independent gamma prior using squared error loss function. The Bayes 

estimates are computed with the help of Lindley’s, T-K and Markov Chain Monte Carlo methods. 

The value of hyper parameters are assumed as a = 4,b = 2. The reliability estimates are evaluated for 

t = 3, where, actual reliability R(t)=0.3586. Further, Bayes estimators are also derived with respect to 

a non-informative prior distribution where the values of each hyper parameters are assigned as zero. 

From the extensive study of simulation, we see that the estimates obtained by Lindley’s 

approximation method have less variability as compared to the estimates obtained by rest of other 

two methods when informative prior is considered. Performances of the estimators are quite similar 

in case of non-informative prior. The average estimates and corresponding MSE are reported in 

Tables 3-6. From Tables we observed that; 

 

• The mean square error of all estimators are decreases when the sample size n and effective 

sample size m are increases. 

• The mean square error of the Bayes estimators are smaller than the mean square error of 

maximum likelihood estimators in the case of informative prior but in other hand the mean square 

error of the all estimators are approximately same when non-informative prior is taken. 

• Under three approximation techniques, the mean square error of Bayes estimates of the 

parameter under informative prior following patterns is noticed; 

MSEs(Lindley0s) < MSEs(T − K) ≤ MSEs(MCMC) < MSEs(MLE) 

 

In other hand, the MSEs of the estimates of the parameter are almost same in the case of non-

informative prior. 

• Under three approximation techniques, the mean square error of Bayes estimates of the reliability 

function obtained under informative as well as non-informative we noticed that; 

MSEs(Lindley0s) < MSEs(T − K) < MSEs(MCMC) < MSEs(MLE) 
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• The Length of the 95% Bayes intervals is much smaller than the asymptotic confidence intervals. 

• The credible length of interval in case of informative prior is smaller than the credible length of 

intervals obtained under non-informative prior in all considered cases. 

Table 1: Estimates of the parameter and reliability function for the 

considered real data set. 

 

 

 
 

Table 2: 95% confidence intervals for the parameter of considered real data 

set. 
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Table 3: Average estimates and MSEs of the parameter for different variation of n, 

m and RI under informative prior when, α = 2. 

 
Table 4: Average estimates and MSEs of the reliability function R(t) for different 

variation of n, m and RI under informative prior, when t = 3. 
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Table 5: Average estimates and MSEs of the parameter for different variation of n, 

m and RI under non-informative prior when α = 2. 

 
Table 6: Average estimates and MSEs of the reliability function R(t) for different 

variation of n, m and RI under non-informative prior, when t = 3. 
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6. Conclusions 

In this paper, we proposed the Bayes estimation of the unknown parameter and reliability function 

of the exponentiated gamma distribution under progressive type-II censored data. The proposed 

estimators are compared along with maximum likelihood estimators using Monte Carlo simulations. 

MLEs is obtained by using non-linear maximization method. The Bayes estimates of the parameter and 

reliability function are computed under the assumption of independent gamma prior using Lindley’s, 

T-K and MCMC techniques under squared error loss function. It is observed that the approximation 

techniques works very well and we noticed that the performances of Bayes estimators obtained under 

informative prior using Lindley’s approximation have smaller mean square error as compared to the 

rest of the methods while the MSEs of the Bayes estimators are quite similar under T-K and MCMC 

methods. The performances of the estimators are almost same in the case on non-informative prior in 

all approximation methods. 
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